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Abstract. Currently, the neural network architecture design is mostly
guided by the indirect metric of computation complexity, i.e., FLOPs.
However, the direct metric, e.g., speed, also depends on the other factors
such as memory access cost and platform characterics. Thus, this work
proposes to evaluate the direct metric on the target platform, beyond
only considering FLOPs. Based on a series of controlled experiments,
this work derives several practical guidelines for efficient network de-
sign. Accordingly, a new architecture is presented, called ShuffleNet V2.
Comprehensive ablation experiments verify that our model is the state-
of-the-art in terms of speed and accuracy tradeoff.
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1 Introduction

The architecture of deep convolutional neutral networks (CNNs) has evolved for
years, becoming more accurate and faster. Since the milestone work of AlexNet [1],
the ImageNet classification accuracy has been significantly improved by novel
structures, including VGG [2], GoogLeNet [3], ResNet [4,5], DenseNet [6], ResNeXt [7],
SE-Net [8], and automatic neutral architecture search [9,10,11], to name a few.

Besides accuracy, computation complexity is another important considera-
tion. Real world tasks often aim at obtaining best accuracy under a limited
computational budget, given by target platform (e.g., hardware) and applica-
tion scenarios (e.g., auto driving requires low latency). This motivates a series of
works towards light-weight architecture design and better speed-accuracy trade-
off, including Xception [12], MobileNet [13], MobileNet V2 [14], ShuffleNet [15],
and CondenseNet [16], to name a few. Group convolution and depth-wise con-
volution are crucial in these works.

To measure the computation complexity, a widely used metric is the number
of float-point operations, or FLOPs1. However, FLOPs is an indirect metric. It
is an approximation of, but usually not equivalent to the direct metric that we
really care about, such as speed or latency. Such discrepancy has been noticed

? Equal contribution.
1 In this paper, the definition of FLOPs follows [15], i.e. the number of multiply-adds.
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(a) GPU (b) ARM

(c) GPU (d) ARM

Fig. 1: Measurement of accuracy (ImageNet classification on validation set), speed and
FLOPs of four network architectures on two hardware platforms with four different level
of computation complexities (see text for details). (a, c) GPU results, batchsize = 8.
(b, d) ARM results, batchsize = 1. The best performing algorithm, our proposed
ShuffleNet v2, is on the top right region, under all cases.

in previous works [17,18,14,19]. For example, MobileNet v2 [14] is much faster
than NASNET-A [9] but they have comparable FLOPs. This phenomenon is
further exmplified in Figure 1(c)(d), which show that networks with similar
FLOPs have different speeds. Therefore, using FLOPs as the only metric for
computation complexity is insufficient and could lead to sub-optimal design.

The discrepancy between the indirect (FLOPs) and direct (speed) metrics
can be attributed to two main reasons. First, several important factors that have
considerable affection on speed are not taken into account by FLOPs. One such
factor is memory access cost (MAC). Such cost constitutes a large portion of
runtime in certain operations like group convolution. It could be bottleneck on
devices with strong computing power, e.g., GPUs. This cost should not be simply
ignored during network architecture design. Another one is degree of parallelism.
A model with high degree of parallelism could be much faster than another one
with low degree of parallelism, under the same FLOPs.

Second, operations with the same FLOPs could have different running time,
depending on the platform. For example, tensor decomposition is widely used
in early works [20,21,22] to accelerate the matrix multiplication. However, the
recent work [19] finds that the decomposition in [22] is even slower on GPU
although it reduces FLOPs by 75%. We investigated this issue and found that
this is because the latest CUDNN [23] library is specially optimized for 3 × 3
conv. We cannot certainly think that 3 × 3 conv is 9 times slower than 1 × 1
conv.
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Fig. 2: Run time decomposition on two representative state-of-the-art network archi-
tectures, ShuffeNet v1 [15] (1×, g = 3) and MobileNet v2 [14] (1×).

With these observations, we propose that two principles should be considered
for effective network architecture design. First, the direct metric (e.g., speed)
should be used instead of the indirect ones (e.g., FLOPs). Second, such metric
should be evaluated on the target platform.

In this work, we follow the two principles and propose a more effective net-
work architecture. In Section 2, we firstly analyze the runtime performance of two
representative state-of-the-art networks [15,14]. Then, we derive four guidelines
for efficient network design, which are beyond only considering FLOPs. While
these guidelines are platform independent, we perform a series of controlled ex-
periments to validate them on two different platforms (GPU and ARM) with
dedicated code optimization, ensuring that our conclusions are state-of-the-art.

In Section 3, according to the guidelines, we design a new network structure.
As it is inspired by ShuffleNet [15], it is called ShuffleNet V2. It is demonstrated
much faster and more accurate than the previous networks on both platforms,
via comprehensive validation experiments in Section 4. Figure 1(a)(b) gives an
overview of comparison. For example, given the computation complexity budget
of 40M FLOPs, ShuffleNet v2 is 3.5% and 3.7% more accurate than ShuffleNet
v1 and MobileNet v2, respectively.

2 Practical Guidelines for Efficient Network Design

Our study is performed on two widely adopted hardwares with industry-level
optimization of CNN library. We note that our CNN library is more efficient
than most open source libraries. Thus, we ensure that our observations and
conclusions are solid and of significance for practice in industry.

– GPU. A single NVIDIA GeForce GTX 1080Ti is used. The convolution li-
brary is CUDNN 7.0 [23]. We also activate the benchmarking function of
CUDNN to select the fastest algorithms for different convolutions respec-
tively.

– ARM. A Qualcomm Snapdragon 810. We use a highly-optimized Neon-based
implementation. A single thread is used for evaluation.
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GPU (Batches/sec.) ARM (Images/sec.)

c1:c2 (c1,c2) for ×1 ×1 ×2 ×4 (c1,c2) for ×1 ×1 ×2 ×4

1:1 (128,128) 1480 723 232 (32,32) 76.2 21.7 5.3
1:2 (90,180) 1296 586 206 (22,44) 72.9 20.5 5.1
1:6 (52,312) 876 489 189 (13,78) 69.1 17.9 4.6
1:12 (36,432) 748 392 163 (9,108) 57.6 15.1 4.4

Table 1: Validation experiment for Guideline 1. Four different ratios of number of
input/output channels (c1 and c2) are tested, while the total FLOPs under the four
ratios is fixed by varying the number of channels. Input image size is 56× 56.

Other settings include: full optimization options (e.g. tensor fusion, which
is used to reduce the overhead of small operations) are switched on. The input
image size is 224× 224. Each network is randomly initialized and evaluated for
100 times. The average runtime is used.

To initiate our study, we analyze the runtime performance of two state-
of-the-art networks, ShuffleNet v1 [15] and MobileNet v2 [14]. They are both
highly efficient and accurate on ImageNet classification task. They are both
widely used on low end devices such as mobiles. Although we only analyze these
two networks, we note that they are representative for the current trend. At
their core are group convolution and depth-wise convolution, which are also
crucial components for other state-of-the-art networks, such as ResNeXt [7],
Xception [12], MobileNet [13], and CondenseNet [16].

The overall runtime is decomposed for different operations, as shown in Fig-
ure 2. We note that the FLOPs metric only account for the convolution part.
Although this part consumes most time, the other operations including data
I/O, data shuffle and element-wise operations (AddTensor, ReLU, etc) also oc-
cupy considerable amount of time. Therefore, FLOPs is not an accurate enough
estimation of actual runtime.

Based on this observation, we perform a detailed analysis of runtime (or
speed) from several different aspects and derive several practical guidelines for
efficient network architecture design.

G1) Equal channel width minimizes memory access cost (MAC).
The modern networks usually adopt depthwise separable convolutions [12,13,15,14],
where the pointwise convolution (i.e., 1 × 1 convolution) accounts for most of
the complexity [15]. We study the kernel shape of the 1 × 1 convolution. The
shape is specified by two parameters: the number of input channels c1 and out-
put channels c2. Let h and w be the spatial size of the feature map, the FLOPs
of the 1× 1 convolution is B = hwc1c2.

For simplicity, we assume the cache in the computing device is large enough
to store the entire feature maps and parameters. Thus, the memory access cost
(MAC), or the number of memory access operations, is MAC = hw(c1+c2)+c1c2.
Note that the two terms correspond to the memory access for input/output
feature maps and kernel weights, respectively.

From mean value inequality, we have
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GPU (Batches/sec.) CPU (Images/sec.)

g c for ×1 ×1 ×2 ×4 c for ×1 ×1 ×2 ×4

1 128 2451 1289 437 64 40.0 10.2 2.3
2 180 1725 873 341 90 35.0 9.5 2.2
4 256 1026 644 338 128 32.9 8.7 2.1
8 360 634 445 230 180 27.8 7.5 1.8

Table 2: Validation experiment for Guideline 2. Four values of group number g are
tested, while the total FLOPs under the four values is fixed by varying the total channel
number c. Input image size is 56× 56.

MAC ≥ 2
√
hwB +

B

hw
. (1)

Therefore, MAC has a lower bound given by FLOPs. It reaches the lower
bound when the numbers of input and output channels are equal.

The conclusion is theoretical. In practice, the cache on many devices is not
large enough. Also, modern computation libraries usually adopt complex block-
ing strategies to make full use of the cache mechanism [24]. Therefore, the real
MAC may deviate from the theoretical one. To validate the above conclusion, an
experiment is performed as follows. A benchmark network is built by stacking 10
building blocks repeatedly. Each block contains two convolution layers. The first
contains c1 input channels and c2 output channels, and the second otherwise.

Table 1 reports the running speed by varying the ratio c1 : c2 while fixing
the total FLOPs. It is clear that when c1 : c2 is approaching 1 : 1, the MAC
becomes smaller and the network evaluation speed is faster.

G2) Excessive group convolution increases MAC. Group convolution
is at the core of modern network architectures [7,15,25,26,27,28]. It reduces the
computational complexity (FLOPs) by changing the dense convolution between
all channels to be sparse (only within groups of channels). On one hand, it allows
usage of more channels given a fixed FLOPs and increases the network capacity
(thus better accuracy). On the other hand, however, the increased number of
channels results in more MAC.

Formally, following the notations in G1 and Eq. 1, the relation between MAC
and FLOPs for 1× 1 group convolution is

MAC = hw(c1 + c2) +
c1c2
g

= hwc1 +
Bg

c1
+

B

hw
,

(2)

where g is the number of groups and B = hwc1c2/g is the FLOPs. It is easy to
see that, given the fixed input shape c1 × h× w and the computational cost B,
MAC increases with the growth of g.

To study the affection in practice, a benchmark network is built by stacking
10 pointwise group convolution layers. Table 2 reports the running speed of using
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GPU (Batches/sec.) CPU (Images/sec.)

c=128 c=256 c=512 c=64 c=128 c=256

1-fragment 2446 1274 434 40.2 10.1 2.3
2-fragment-series 1790 909 336 38.6 10.1 2.2
4-fragment-series 752 745 349 38.4 10.1 2.3
2-fragment-parallel 1537 803 320 33.4 9.1 2.2
4-fragment-parallel 691 572 292 35.0 8.4 2.1

Table 3: Validation experiment for Guideline 3. c denotes the number of channels for
1-fragment. The channel number in other fragmented structures is adjusted so that the
FLOPs is the same as 1-fragment. Input image size is 56× 56.

GPU (Batches/sec.) CPU (Images/sec.)

ReLU short-cut c=32 c=64 c=128 c=32 c=64 c=128

yes yes 2427 2066 1436 56.7 16.9 5.0

yes no 2647 2256 1735 61.9 18.8 5.2

no yes 2672 2121 1458 57.3 18.2 5.1

no no 2842 2376 1782 66.3 20.2 5.4

Table 4: Validation experiment for Guideline 4. The ReLU and shortcut operations
are removed from the “bottleneck” unit [4], separately. c is the number of channels in
unit. The unit is stacked repeatedly for 10 times to benchmark the speed.

different group numbers while fixing the total FLOPs. It is clear that using a
large group number decreases running speed significantly. For example, using
8 groups is more than two times slower than using 1 group (standard dense
convolution) on GPU and up to 30% slower on ARM. This is mostly due to
increased MAC. We note that our implementation has been specially optimized
and is much faster than trivially computing convolutions group by group.

Therefore, we suggest that the group number should be carefully chosen based
on the target platform and task. It is unwise to use a large group number simply
because this may enable using more channels, because the benefit of accuracy
increase can easily be outweighed by the rapidly increasing computational cost.

G3) Network fragmentation reduces degree of parallelism. In the
GoogLeNet series [29,30,3,31] and auto-generated architectures [9,11,10]), a “multi-
path” structure is widely adopted in each network block. A lot of small operators
(called “fragmented operators” here) are used instead of a few large ones. For
example, in NASNET-A [9] the number of fragmented operators (i.e. the number
of individual convolution or pooling operations in one building block) is 13. In
contrast, in regular structures like ResNet [4], this number is 2 or 3.

Though such fragmented structure has been shown beneficial for accuracy, it
could decrease efficiency because it is unfriendly for devices with strong parallel
computing powers like GPU. It also introduces extra overheads such as kernel
launching and synchronization.

To quantify how network fragmentation affects efficiency, we evaluate a se-
ries of network blocks with different degrees of fragmentation. Specifically, each
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Fig. 3: Building blocks of ShuffleNet v1 [15] and this work. (a): the basic ShuffleNet
unit; (b) the ShuffleNet unit for spatial down sampling (2×); (c) our basic unit; (d)
our unit for spatial down sampling (2×). DWConv: depthwise convolution. GConv:
group convolution.

building block consists of from 1 to 4 1× 1 convolutions, which are arranged in
sequence or in parallel. The block structures are illustrated in appendix. Each
block is repeatedly stacked for 10 times. Results in Table 3 show that fragmen-
tation reduces the speed significantly on GPU, e.g. 4-fragment structure is 3×
slower than 1-fragment. On ARM, the speed reduction is relatively small.

G4) Element-wise operations are non-negligible. As shown in Fig-
ure 2, in light-weight models like [15,14], element-wise operations occupy con-
siderable amount of time, especially on GPU. Here, the element-wise operators
include ReLU, AddTensor, AddBias, etc. They have small FLOPs but relatively
heavy MAC. Specially, we also consider depthwise convolution [12,13,14,15] as
an element-wise operator as it also has a high MAC/FLOPs ratio.

For validation, we experimented with the “bottleneck” unit (1× 1 conv fol-
lowed by 3×3 conv followed by 1×1 conv, with ReLU and shortcut connection)
in ResNet [4]. The ReLU and shortcut operations are removed, separately. Run-
time of different variants is reported in Table 4. We observe around 20% speedup
is obtained on both GPU and ARM, after ReLU and shortcut are removed.

Conclusion and Discussions Based on the above guidelines and empirical
studies, we conclude that an efficient network architecture should 1) use ”bal-
anced“ convolutions (equal channel width); 2) be aware of the cost of using group
convolution; 3) reduce the degree of fragmentation; and 4) reduce element-wise
operations. These desirable properties depend on platform characterics (such
as memory manipulation and code optimization) that are beyond theoretical
FLOPs. They should be taken into accout for practical network design.

Recent advances in light-weight neural network architectures [15,13,14,9,11,10,12]
are mostly based on the metric of FLOPs and do not consider these proper-
ties above. For example, ShuffleNet v1 [15] heavily depends group convolutions
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Layer Output size KSize Stride Repeat
Output channels

0.5× 1× 1.5× 2×
Image 224×224 3 3 3 3

Conv1
MaxPool

112×112
56×56

3×3
3×3

2
2

1 24 24 24 24

Stage2
28×28
28×28

2
1

1
3

48 116 176 244

Stage3
14×14
14×14

2
1

1
7

96 232 352 488

Stage4
7×7
7×7

2
1

1
3

192 464 704 976

Conv5 7×7 1×1 1 1 1024 1024 1024 2048

GlobalPool 1×1 7×7

FC 1000 1000 1000 1000

FLOPs 41M 146M 299M 591M

# of Weights 1.4M 2.3M 3.5M 7.4M

Table 5: Overall architecture of ShuffleNet v2, for four different levels of complexities.

(against G2) and bottleneck-like building blocks (against G1). MobileNet v2 [14]
uses an inverted bottleneck structure that violates G1. It uses depthwise convolu-
tions and ReLUs on “thick” feature maps. This violates G4. The auto-generated
structures [9,11,10] are highly fragmented and violate G3.

3 ShuffleNet V2: an Efficient Architecture

Review of ShuffleNet v1 [15]. ShuffleNet is a state-of-the-art network archi-
tecture. It is widely adopted in low end devices such as mobiles. It inspires our
work. Thus, it is reviewed and analyzed at first.

According to [15], the main challenge for light-weight networks is that only a
limited number of feature channels is affordable under a given computation bud-
get (FLOPs). To increase the number of channels without significantly increasing
FLOPs, two techniques are adopted in [15]: pointwise group convolutions and
bottleneck-like structures. A “channel shuffle” operation is then introduced to
enable information communication between different groups of channels and im-
prove accuracy. The building blocks are illustrated in Figure 3(a)(b).

As discussed in Section 2, both pointwise group convolutions and bottleneck
structures increase MAC (G1 and G2). This cost is non-negligible, especially for
light-weight models. Also, using too many groups violates G3. The element-wise
“Add” operation in the shortcut connection is also undesirable (G4). Therefore,
in order to achieve high model capacity and efficiency, the key issue is how to
maintain a large number and equally wide channels with neither dense convolu-
tion nor too many groups.

Channel Split and ShuffleNet V2 Towards above purpose, we introduce
a simple operator called channel split. It is illustrated in Figure 3(c). At the
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beginning of each unit, the input of c feature channels are split into two branches
with c − c′ and c′ channels, respectively. Following G3, one branch remains as
identity. The other branch consists of three convolutions with the same input
and output channels to satisfy G1. The two 1 × 1 convolutions are no longer
group-wise, unlike [15]. This is partially to follow G2, and partially because the
split operation already produces two groups.

After convolution, the two branches are concatenated. So, the number of
channels keeps the same (G1). The same “channel shuffle” operation as in [15]
is then used to enable information communication between the two branches.

After the shuffling, the next unit begins. Note that the “Add” operation in
ShuffleNet v1 [15] no longer exists. Element-wise operations like ReLU and depth-
wise convolutions exist only in one branch. Also, the three successive element-
wise operations, “Concat”, “Channel Shuffle” and “Channel Split”, are merged
into a single element-wise operation. These changes are beneficial according to
G4.

For spatial down sampling, the unit is slightly modified and illustrated in
Figure 3(d). The channel split operator is removed. Thus, the number of output
channels is doubled.

The proposed building blocks (c)(d), as well as the resulting networks, are
called ShuffleNet V2. Based the above analysis, we conclude that this architec-
ture design is highly efficient as it follows all the guidelines.

The building blocks are repeatedly stacked to construct the whole network.
For simplicity, we set c′ = c/2. The overall network structure is similar to Shuf-
fleNet v1 [15] and summarized in Table 5. There is only one difference: an ad-
ditional 1× 1 convolution layer is added right before global averaged pooling to
mix up features, which is absent in ShuffleNet v1. Similar to [15], the number of
channels in each block is scaled to generate networks of different complexities,
marked as 0.5×, 1×, etc.

Analysis of Network Accuracy ShuffleNet v2 is not only efficient, but also
accurate. There are two main reasons. First, the high efficiency in each building
block enables using more feature channels and larger network capacity.

Second, in each block, half of feature channels (when c′ = c/2) directly go
through the block and join the next block. This can be regarded as a kind of
feature reuse, in a similar spirit as in DenseNet [6] and CondenseNet [16].

In DenseNet [6], to analyze the feature reuse pattern, the l1-norm of the
weights between layers are plotted, as in Figure 4(a). It is clear that the connec-
tions between the adjacent layers are stronger than the others. This implies that
the dense connection between all layers could introduce redundancy. The recent
CondenseNet [16] also supports the viewpoint.

In ShuffleNet V2, it is easy to prove that the number of “directly-connected”
channels between i-th and (i+j)-th building block is rjc, where r = (1−c′)/c. In
other words, the amount of feature reuse decays exponentially with the distance
between two blocks. Between distant blocks, the feature reuse becomes much
weaker. Figure 4(b) plots the similar visualization as in (a), for r = 0.5. Note
that the pattern in (b) is similar to (a).
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Fig. 4: Illustration of the patterns in feature reuse for DenseNet [6] and ShuffleNet
V2. (a) (courtesy of [6]) the average absolute filter weight of convolutional layers in a
model. The color of pixel (s, l) encodes the average l1-norm of weights connecting layer
s to l. (b) The color of pixel (s, l) means the number of channels directly connecting
block s to block l in ShuffleNet v2. All pixel values are normalized to [0, 1].

Thus, the structure of ShuffleNet V2 realizes this type of feature re-use pat-
tern by design. It shares the similar benefit of feature re-use for high accuracy as
in DenseNet [6], but it is much more efficient as analyzed earlier. This is verified
in experiments, Table 8.

4 Experiment

Our ablation experiments are performed on ImageNet 2012 classification dataset [32,33].
Following the common practice [15,13,14], all networks in comparison have four
levels of computational complexity, i.e. about 40, 140, 300 and 500+ MFLOPs.
Such complexity is typical for mobile scenarios. Other hyper-parameters and
protocols are exactly the same as ShuffleNet v1 [15].

We compare with following network architectures [12,14,6,15]:

– ShuffleNet v1 [15]. In [15], a series of group numbers g is compared. It is
suggested that the g = 3 has better trade-off between accuracy and speed.
This also agrees with our observation. In this work we mainly use g = 3.

– MobileNet v2 [14]. It is better than MobileNet v1 [13]. For comprehensive
comparison, we report accuracy in both original paper [14] and our reimple-
mention, as some results in [14] are not available.

– Xception [12]. The original Xception model [12] is very large (FLOPs >2G),
which is out of our range of comparison. The recent work [34] proposes a
modified light weight Xception structure that shows better trade-offs be-
tween accuracy and efficiency. So, we compare with this variant.

– DenseNet [6]. The original work [6] only reports results of large models
(FLOPs >2G). For direct comparison, we reimplement it following the ar-
chitecture settings in Table 5, where the building blocks in Stage 2-4 consist
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of DenseNet blocks. We adjust the number of channels to meet different
target complexities.

Table 8 summarizes all the results. We analyze these results from different
aspects.

Accuracy vs. FLOPs. It is clear that the proposed ShuffleNet v2 models outper-
form all other networks by a large margin2, especially under smaller computa-
tional budgets. Also, we note that MobileNet v2 performs pooly at 40 MFLOPs
level with 224 × 224 image size. This is probably caused by too few channels.
In contrast, our model do not suffer from this drawback as our efficient design
allows using more channels. Also, while both of our model and DenseNet [6]
reuse features, our model is much more efficient, as discussed in Sec. 3.

Table 8 also compares our model with other state-of-the-art networks includ-
ing CondenseNet [16], IGCV2 [27], and IGCV3 [28] where appropriate. Our
model performs better consistently at various complexity levels.

Inference Speed vs. FLOPs/Accuracy. For four architectures with good accu-
racy, ShuffleNet v2, MobileNet v2, ShuffleNet v1 and Xception, we compare their
actual speed vs. FLOPs, as shown in Figure 1(c)(d). More results on different
resolutions are provided in Appendix Table 1.

ShuffleNet v2 is clearly faster than the other three networks, especially on
GPU. For example, at 500MFLOPs ShuffleNet v2 is 58% faster than MobileNet
v2, 63% faster than ShuffleNet v1 and 25% faster than Xception. On ARM, the
speeds of ShuffleNet v1, Xception and ShuffleNet v2 are comparable; however,
MobileNet v2 is much slower, especially on smaller FLOPs. We believe this is
because MobileNet v2 has higher MAC (see G1 and G4 in Sec. 2), which is
significant on mobile devices.

Compared with MobileNet v1 [13], IGCV2 [27], and IGCV3 [28], we have
two observations. First, although the accuracy of MobileNet v1 is not as good,
its speed on GPU is faster than all the counterparts, including ShuffleNet v2. We
believe this is because its structure satisfies most of proposed guidelines (e.g. for
G3, the fragments of MobileNet v1 are even fewer than ShuffleNet v2). Second,
IGCV2 and IGCV3 are slow. This is due to usage of too many convolution groups
(4 or 8 in [27,28]). Both observations are consistent with our proposed guidelines.

Recently, automatic model search [9,10,11,35,36,37] has become a promising
trend for CNN architecture design. The bottom section in Table 8 evaluates some
auto-generated models. We find that their speeds are relatively slow. We believe
this is mainly due to the usage of too many fragments (see G3). Nevertheless,
this research direction is still promising. Better models may be obtained, for
example, if model search algorithms are combined with our proposed guidelines,
and the direct metric (speed) is evaluated on the target platform.

2 As reported in [14], MobileNet v2 of 500+ MFLOPs has comparable accuracy with
the counterpart ShuffleNet v2 (25.3% vs. 25.1% top-1 error); however, our reimple-
mented version is not as good (26.7% error, see Table 8).
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Finally, Figure 1(a)(b) summarizes the results of accuracy vs. speed, the
direct metric. We conclude that ShuffeNet v2 is best on both GPU and ARM.

Compatibility with other methods. ShuffeNet v2 can be combined with other
techniques to further advance the performance. When equipped with Squeeze-
and-excitation (SE) module [8], the classification accuracy of ShuffleNet v2 is
improved by 0.5% at the cost of certain loss in speed. The block structure is
illustrated in Appendix Figure 2(b). Results are shown in Table 8 (bottom sec-
tion).

Generalization to Large Models. Although our main ablation is performed for
light weight scenarios, ShuffleNet v2 can be used for large models (e.g, FLOPs
≥ 2G). Table 6 compares a 50-layer ShuffleNet v2 (details in Appendix) with
the counterpart of ShuffleNet v1 [15] and ResNet-50 [4]. ShuffleNet v2 still out-
performs ShuffleNet v1 at 2.3GFLOPs and surpasses ResNet-50 with 40% fewer
FLOPs.

For very deep ShuffleNet v2 (e.g. over 100 layers), for the training to converge
faster, we slightly modify the basic ShuffleNet v2 unit by adding a residual path
(details in Appendix). Table 6 presents a ShuffleNet v2 model of 164 layers
equipped with SE [8] components (details in Appendix). It obtains superior
accuracy over the previous state-of-the-art models [8] with much fewer FLOPs.

Object Detection To evaluate the generalization ability, we also tested COCO
object detection [38] task. We use the state-of-the-art light-weight detector –
Light-Head RCNN [34] – as our framework and follow the same training and test
protocols. Only backbone networks are replaced with ours. Models are pretrained
on ImageNet and then finetuned on detection task. For training we use train+val
set in COCO except for 5000 images from minival set, and use the minival set
to test. The accuracy metric is COCO standard mmAP, i.e. the averaged mAPs
at the box IoU thresholds from 0.5 to 0.95.

ShuffleNet v2 is compared with other three light-weight models: Xception
[12,34], ShuffleNet v1 [15] and MobileNet v2 [14] on four levels of complexities.
Results in Table 7 show that ShuffleNet v2 performs the best.

Compared the detection result (Table 7) with classification result (Table 8),
it is interesting that, on classification the accuracy rank is ShuffleNet v2 ≥
MobileNet v2 > ShuffeNet v1 > Xception, while on detection the rank becomes
ShuffleNet v2 > Xception ≥ ShuffleNet v1 ≥ MobileNet v2. This reveals that
Xception is good on detection task. This is probably due to the larger receptive
field of Xception building blocks than the other counterparts (7 vs. 3). Inspired
by this, we also enlarge the receptive field of ShuffleNet v2 by introducing an
additional 3× 3 depthwise convolution before the first pointwise convolution in
each building block. This variant is denoted as ShuffleNet v2*. With only a few
additional FLOPs, it further improves accuracy.

We also benchmark the runtime time on GPU. For fair comparison the batch
size is set to 4 to ensure full GPU utilization. Due to the overheads of data
copying (the resolution is as high as 800 × 1200) and other detection-specific
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Model FLOPs Top-1 err. (%)

ShuffleNet v2-50 (ours) 2.3G 22.8
ShuffleNet v1-50 [15] (our impl.) 2.3G 25.2
ResNet-50 [4] 3.8G 24.0

SE-ShuffleNet v2-164 (ours, with residual) 12.7G 18.56
SENet [8] 20.7G 18.68

Table 6: Results of large models. See text for details.

operations (like PSRoI Pooling [34]), the speed gap between different models is
smaller than that of classification. Still, ShuffleNet v2 outperforms others, e.g.
around 40% faster than ShuffleNet v1 and 16% faster than MobileNet v2.

Furthermore, the variant ShuffleNet v2* has best accuracy and is still faster
than other methods. This motivates a practical question: how to increase the size
of receptive field? This is critical for object detection in high-resolution images
[39]. We will study the topic in the future.

Model mmAP(%)
GPU Speed

(Images/sec.)

FLOPs 40M 140M 300M 500M 40M 140M 300M 500M

Xception 21.9 29.0 31.3 32.9 178 131 101 83
ShuffleNet v1 20.9 27.0 29.9 32.9 152 85 76 60
MobileNet v2 20.7 24.4 30.0 30.6 146 111 94 72
ShuffleNet v2 (ours) 22.5 29.0 31.8 33.3 188 146 109 87
ShuffleNet v2* (ours) 23.7 29.6 32.2 34.2 183 138 105 83

Table 7: Performance on COCO object detection. The input image size is 800× 1200.
FLOPs row lists the complexity levels at 224× 224 input size. For GPU speed evalu-
ation, the batch size is 4. We do not test ARM because the PSRoI Pooling operation
needed in [34] is unavailable on ARM currently.

5 Conclusion

We propose that network architecture design should consider the direct metric
such as speed, instead of the indirect metric like FLOPs. We present practical
guidelines and a novel architecture, ShuffleNet v2. Comprehensive experiments
verify the effectiveness of our new model. We hope this work could inspire future
work of network architecture design that is platform aware and more practical.

Acknowledgements Thanks Yichen Wei for his help on paper writing. This
research is partially supported by National Natural Science Foundation of China
(Grant No. 61773229).
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Model
Complexity
(MFLOPs)

Top-1
err. (%)

GPU Speed
(Batches/sec.)

ARM Speed
(Images/sec.)

ShuffleNet v2 0.5× (ours) 41 39.7 417 57.0
0.25 MobileNet v1 [13] 41 49.4 502 36.4

0.4 MobileNet v2 [14] (our impl.)* 43 43.4 333 33.2
0.15 MobileNet v2 [14] (our impl.) 39 55.1 351 33.6
ShuffleNet v1 0.5× (g=3) [15] 38 43.2 347 56.8
DenseNet 0.5× [6] (our impl.) 42 58.6 366 39.7
Xception 0.5× [12] (our impl.) 40 44.9 384 52.9
IGCV2-0.25 [27] 46 45.1 183 31.5

ShuffleNet v2 1× (ours) 146 30.6 341 24.4
0.5 MobileNet v1 [13] 149 36.3 382 16.5

0.75 MobileNet v2 [14] (our impl.)** 145 32.1 235 15.9
0.6 MobileNet v2 [14] (our impl.) 141 33.3 249 14.9
ShuffleNet v1 1× (g=3) [15] 140 32.6 213 21.8
DenseNet 1× [6] (our impl.) 142 45.2 279 15.8
Xception 1× [12] (our impl.) 145 34.1 278 19.5
IGCV2-0.5 [27] 156 34.5 132 15.5
IGCV3-D (0.7) [28] 210 31.5 143 11.7

ShuffleNet v2 1.5× (ours) 299 27.4 255 11.8
0.75 MobileNet v1 [13] 325 31.6 314 10.6
1.0 MobileNet v2 [14] 300 28.0 180 8.9
1.0 MobileNet v2 [14] (our impl.) 301 28.3 180 8.9
ShuffleNet v1 1.5× (g=3) [15] 292 28.5 164 10.3
DenseNet 1.5× [6] (our impl.) 295 39.9 274 9.7
CondenseNet (G=C=8) [16] 274 29.0 - -
Xception 1.5× [12] (our impl.) 305 29.4 219 10.5
IGCV3-D [28] 318 27.8 102 6.3

ShuffleNet v2 2× (ours) 591 25.1 217 6.7
1.0 MobileNet v1 [13] 569 29.4 247 6.5
1.4 MobileNet v2 [14] 585 25.3 137 5.4
1.4 MobileNet v2 [14] (our impl.) 587 26.7 137 5.4
ShuffleNet v1 2× (g=3) [15] 524 26.3 133 6.4
DenseNet 2× [6] (our impl.) 519 34.6 197 6.1
CondenseNet (G=C=4) [16] 529 26.2 - -
Xception 2× [12] (our impl.) 525 27.6 174 6.7
IGCV2-1.0 [27] 564 29.3 81 4.9
IGCV3-D (1.4) [28] 610 25.5 82 4.5

ShuffleNet v2 2x (ours, with SE [8]) 597 24.6 161 5.6
NASNet-A [9] ( 4 @ 1056, our impl.) 564 26.0 130 4.6
PNASNet-5 [10] (our impl.) 588 25.8 115 4.1

Table 8: Comparison of several network architectures over classification error (on valida-
tion set, single center crop) and speed, on two platforms and four levels of computation
complexity. Results are grouped by complexity levels for better comparison. The batch
size is 8 for GPU and 1 for ARM. The image size is 224 × 224 except: [*] 160 × 160
and [**] 192× 192. We do not provide speed measurements for CondenseNets [16] due
to lack of efficient implementation currently.
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Appendix
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Appendix Fig. 1: Building blocks used in experiments for guideline 3. (a) 1-fragment.
(b) 2-fragment-series. (c) 4-fragment-series. (d) 2-fragment-parallel. (e) 4-fragment-
parallel.
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Appendix Fig. 2: Building blocks of ShuffleNet v2 with SE/residual. (a) ShuffleNet v2
with residual. (b) ShuffleNet v2 with SE. (c) ShuffleNet v2 with SE and residual.
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GPU (Batches/sec.) CPU (Images/sec.)

Input size FLOPs 40M 140M 300M 500M 40M 140M 300M 500M

320x320

ShuffleNet v2 315∗ 525 474 422 28.1 12.5 6.1 3.4
ShuffleNet v1 236∗ 414 344 275 27.2 11.4 5.1 3.1
MobileNet v2 187∗ 460 389 335 11.4 6.4 4.6 2.7
Xception 279∗ 463 408 350 31.1 10.1 5.6 3.5

640x480

ShuffleNet v2 424 394 297 250 9.3 4.0 1.9 1.1
ShuffleNet v1 396 269 198 156 8.0 3.7 1.6 1.0
MobileNet v2 338 248 208 165 3.8 2.0 1.4 0.8
Xception 399 326 244 209 9.6 3.2 1.7 1.1

1080x720

ShuffleNet v2 248 197 141 115 3.5 1.5 0.7 0.4
ShuffleNet v1 203 131 96 77 2.9 1.4 0.4 0.3
MobileNet v2 159 117 99 78 1.4 0.7 0.3 0.3
Xception 232 160 124 106 3.6 1.2 0.5 0.4

(a) Comparison of actual speeds (whole architecture).

GPU (Batches/sec.) CPU (Images/sec.)

Input size Channel (c) for ShuffleNet v2 c=64 c=128 c=256 c=64 c=128 c=256

56x56

ShuffleNet v2 216 142 81 34.8 12.3 3.9
ShuffleNet v1 127 73 45 24.3 9.4 3.0
MobileNet v2 89 125 69 25.8 10.0 3.0

Xception 185 52 68 27.0 9.7 3.1

28x28

ShuffleNet v2 407 313 237 174.5 53.4 16.6
ShuffleNet v1 298 222 60 139.7 43.9 13.2
MobileNet v2 381 286 189 118.3 46.2 13.3

Xception 254 238 169 117.0 45.8 14.0

(b) Comparison of actual speeds (units).

Appendix Table 1: Table (a) compares the speed of each network (whole architecture).
Table (b) compares the speed of each network’s unit, we stack 10 network units of each
network; the value of c means the number of channels for ShuffleNet v2, we adjust the
number of channels to keep the FLOPs unchanged for other network units. Please refer
to Section 4 for details. [∗] For the models of 40M FLOPs with input size of 320× 320,
the batchsize is set to 8 to ensure the GPU utilization rate, and we set batchsize = 1
otherwise.
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layer
output

size
ShuffleNet v1-50

(group=3)
ShuffleNet v2-50 Resnet-50

SE-ShuffleNet
v2-164

conv1 x 112×112 3×3, 64, stride 2 3×3, 64, stride 2 7×7, 64, stride 2
3×3, 64, stride 2

3×3, 64
3×3, 128

conv2 x 56×56
3×3 max pool, stride 21×1, 360

3×3, 360
1×1, 360

×3

1×1, 244
3×3, 244
1×1, 244

×3

 1×1, 64
3×3, 64
1×1, 256

×3

1×1, 340
3×3, 340
1×1, 340

×10

conv3 x 28×28

1×1, 720
3×3, 720
1×1, 720

×4

1×1, 488
3×3, 488
1×1, 488

×4

1×1, 128
3×3, 128
1×1, 512

×4

1×1, 680
3×3, 680
1×1, 680

×10

conv4 x 14×14

1×1, 1440
3×3, 1440
1×1, 1440

×6

1×1, 976
3×3, 976
1×1, 976

×6

 1×1, 256
3×3, 256
1×1, 1024

×6

1×1, 1360
3×3, 1360
1×1, 1360

×23

conv5 x 7×7

1×1, 2880
3×3, 2880
1×1, 2880

×3

1×1, 1952
3×3, 1952
1×1, 1952

×3

 1×1, 512
3×3, 512
1×1, 2048

×3

1×1, 2720
3×3, 2720
1×1, 2720

×10

conv6 7×7 - 1×1, 2048 - 1×1, 2048

1×1 average pool, 1000-d fc, softmax

FLOPs 2.3G 2.3G 3.8G 12.7G

Appendix Table 2: Architectures for large models. Building blocks are shown in brack-
ets, with the convolution kernel shapes and the numbers of blocks stacked. Downsam-
pling is performed by conv3 1, conv4 1, and conv5 1 with a stride of 2. For ShuffleNet
v1-50 and ResNet-50, the bottleneck ratio is set to 1:4. For SE-ShuffleNet v2-164, we
add the SE modules right before the residual add-ReLUs (details in Appendix Figure
2); we set the neural numbers in SE modules to the 1/2 of the channel numbers in the
corresponding building blocks. See Section 4 for details.
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